
Motivation & Background
Our team has an interest in financial data, specifically stock data, so we wanted to create a stock trading algorithm. The pairs trading algorithm is a 
common model in systematic trading. Our version of the pairs trading algorithm seeks to utilize mean reversion theory to create a profitable trading 
strategy by buying and selling two cointegrated stocks. Mean reversion theory states that over time, assets will converge to their average price, so when 
they stray from that average, there is arbitrage, or potential for profit. Mean reversion is a very commonly used concept in trading, not only being used for 
pairs trading, but also moving-average crossover trading and calendar spread trading.

Objective
Our algorithm will conduct an analysis on the top 100 companies from three different sectors: Healthcare, Technology, and Industrials. It will find a pair of 
cointegrated stocks, then use our pairs trading algorithm to trade this stock, hopefully leading to positive returns.

Mean Reversion Analysis
by Vincent Lee, Ryan Pierce, and Raul Martinez

1



Financial Definitions

2

Stock

Stocks represent a tiny ownership stake in a company. They can be 
bought and sold on stock exchanges such as the New York Stock 
Exchange, and their prices can go up or down based on factors such as 
the company’s performance, economic conditions, and investor 
sentiment.

Long Position

A long position in when you buy a stock with the expectation that its 
value will increase over time, allowing you to sell it later at a higher price 
for a profit. One can enter a long position by buying a stock or selling a 
call option.

Short Position

A short position is a way to make money when the price of an 
investment goes down. One can enter a short position by selling a call 
option.

Buy Low, Sell High

Buy low, sell high is a motto among traders. Buy means to take a long 
position, and sell means to take a short position. You make money if you 
take a long position when a stock is low, then the stock price increases, 
or if you take a short position when a stock is high, then the stock price 
decreases. If you want to make money, you should buy low and sell high!

Spread

Stock spread refers to the price difference between two stocks at a 
certain period of time. If the current spread between two stocks moves 
away from the historical spread between those stocks, the stocks are 
said to be diverging.



Data Sources

3

Website - stockanalysis.com

Description - Stock Analysis is a website which contains information 
about stocks as well as stock market news articles. In addition, they also 
have pages dedicated to showcasing stocks which belong to particular 
sector of the stock market. We used this site to scrape a list of the top 
100 stocks for the healthcare, industrials, and technology sector of the 
stock market.

Size - <1mb
Location - https://stockanalysis.com/
Format - HTML
Access Method - Web Scraping

Python Library - yfinance 

Description - yfinance is a python library which allows users to obtain 
time series information about assets using the Yahoo Finance API, 
particularly stocks traded in the NYSE. We used this library to obtain all 
the closing prices for the stocks we analyzed.

Size - <1mb
Location - https://pypi.org/project/yfinance/
Format - DataFrame
Access Method - python library (yfinance)



Data Manipulation

4

Web Scraping

The team utilized web scraping to obtain a list of the top 100 stocks from 
the healthcare, industrials, and technology sectors of the market. To 
accomplish this the team utilized the python libraries requests, and 
beautifulsoup to scrape the stock tickers from the site Stock Analysis.

The process of scraping the stocks was encapsulated into a function 
called scrape_stock_symbols(). This function takes two arguments. The 
first argument is arr which is an array of dictionaries, each of which 
contains two keys the url to scrape and the sector that the stocks belong 
to. The second argument is top_n which specifies how many of the top n 
stock tickers the function should scrape. 

The function begins by establishing an empty list called stocks, which is 
used to aggregate the responses from each page. Then the function 
loops through the dictionaries in arr. For each url, it sends a GET request 
to the url, then parses the HTML response into a BeautifulSoup object 
and stores it in a variable soup. The function then utilizes soup to target 
the text inside of HTML tags which contain the stock tickers which are 
required, and generate a list of all the stock ticker symbols for the sector. 
The list of stock ticker symbols and the sector are appended to stocks in 
a dictionary containing the list and the string for the sector.

The function returns a list of dictionaries. Each with two keys, sector 
which is a string for the particular sector which was scraped and 
stock_symbols which is a list of top 100 tickers corresponding to the 
sector.

Below is an example of one of the pages scraped:



Data Manipulation

5

Database Stock Price Seeding

For a single source of truth the team decided to use a PostgreSQL 
database hosted on Heroku. To execute any queries to the database, a 
function sql_execution_wrapper(sql_statement)  was created to manage 
opening, closing, executing, and committing any sql query. To create the 
necessary table for the database a function was created 
create_stock_price_table() which created the table stock_prices. To 
prevent against duplicate entries, we restricted a UNIQUE combination 
of the ticker and date columns.

To seed the database, a function called seed_stock_info() was created to 
orchestrate the scraping and seeding of stock symbols. First, the function 
would scrape the three stock sectors of interest using the 
scrape_stock_symbols() function. The resulting list of dictionaries, would 
be iterated and the stock_symbols list within each dictionary would be 
iterated creating a for-loop within a for-loop. In the innermost for-loop, 
we would loop through each ticker for a particular industry. For each 
ticker,  a function insert_stock_records_to_db(ticker, sector, start_date, 
end_date) was executed. This function handled retrieving all available 
stock price history from yfinance and transforming the DataFrame 
response from yfinance into a string which combined the necessary 
columns into a SQL INSERT query.

Here is an example insert query that the function would 
generate and execute for one day of stock info:

INSERT INTO public.stock_prices(price, ticker, date, sector)
VALUES (85.82,'AMZN','2023-01-03','technology');

The actual query, inserted values for every available price from 
08/31/2019 - 08/31/2023, in a single query. This inner loop ran 300 
times, one for every 100 stocks in the 3 sectors the team chose. Out of 
the 300 stocks, two were not available in yfinance, and 18 did not have 
complete information. To prevent errors from breaking the loops, the 
insert statements were wrapped in a try/except block, logging whenever 
an error was encountered.  In downstream analyses, only stocks with 
complete information were considered.

Once the data was in the database, team members were able to access 
the stock information through a function called 
get_stock_prices_from_db() which would return the entire table as a 
DataFrame of shape (294277, 5).



Analysis

6

Cointegration

Cointegration can be interpreted as a long-term relationship between 
two or more time series variables over time. Two series that are 
cointegrated tend to move together over the long run, even if they 
independently fluctuate in the short term. Mathematically, if two series 
are cointegrated, they can be linearly combined to form a stationary 
series. It is important to note that cointegration is not correlation and 
two assets can be cointegrated while not being correlated, as well as the 
inverse.

To determine stocks which are cointegrated, we divided the stocks by 
sector to only analyze same sector stocks. From there, we further 
filtered the stocks to ensure that only stocks with complete data for the 
time period of 2019-08-31 to 2023-08-31 were included in the analysis. 
For these stocks we chose the time period 2019-08-31 to 2022-08-31 to 
analyze cointegration between the stocks. This was done intentionally to 
hold out the last year of data to test the stock prediction algorithm. In 
addition, this prevented the potential for data leakage, where the 
algorithm would have access to cointegrated values over a period of time 
which the algorithm should not have access to.

The test used to determine cointegration between a pair of stocks was 
the augmented Engle-Granger cointegration test. This test is 
implemented in a function named coint which is available in the 
statsmodels python library. For the augmented Engle-Granger test, the 
null hypothesis is that there is no cointegration, meaning if the p-value 
from the test is small we can reject the hypothesis that there is no 
cointegrating relationship (6). 

The team decided the critical size of the p-value to be below 0.05. Any 
cointegration pair with a p-value below 0.05 would be considered for 
further stationarity analysis.

Note that our cointegration test is susceptible to multiple comparison 
bias. We tried to minimize this issue by only comparing stocks to other 
stocks in the same sector. Large hedge funds usually take this a step 
further, and have large teams of economic and financial analysts 
narrowing down the list to just a few stocks before running cointegration 
tests, but given our lack of time and resources, we were unable to do 
this. Thus, we must acknowledge multiple comparison bias as a 
limitation to our current model.



Analysis

7

Stationary

A stationary series is a time series in which the statistical properties, 
such as the mean and variance are constant over time.

For each asset pair which was determined to be cointegrated, an 
additional test was performed to determine stationarity in the spread 
between the two stocks. The spread can be interpreted in several ways 
in quantitative stock analysis, for our analysis we used the ratio spread. 
The price ratio spread is obtained by dividing one stock series by the 
other, the result is a singular time series of data with the price ratio 
between two individual assets.

To analyze the stationarity in the price ratio spread, the team used the 
Augmented Dickey-Fuller test. This test is implemented in a function 
named adfuller which is available in the statsmodels python library. For 
the Augmented Dickey-Fuller test, the null hypothesis is that there is a 
unit root (6). For every pair which was identified to be cointegrated, an 
additional Augmented Dickey-Fuller test was performed on the price 
ratio spread to determine the p-value of the test.

Cointegration and Stationarity Results

The main drawback encountered with the coint and adfuller functions 
are the absence of a vectorized implementation, requiring the team to 
use an inner and outer for loop to analyze every pair resulting in a long 
O(n^2) runtime to analyze all the pairs. Comparing all the stock pairs for 
the 3 sectors, took around 15 minutes to complete. To combat this long 
running execution time, the team made use of a PostgreSQL Database 
table to persist the results of the analysis. Note that this limitation would 
not be a problem if we were able to narrow our list of stocks to compare, 
as mentioned in the Cointegration slide.

To store the results, the team used a table called stock_cointegrations 
with four columns. One column for each stock in the pair, as well as a 
column for the p-value for the result from the coint test and a column for 
the p-value result from the adfuller test. 

The analysis returned 1303 pairs of same sector stocks which contained 
a p-value below the 0.05 significance level cutoff.

In addition, an access function was provided named 
get_stock_coint_pairs_from_db(). This function allowed team members 
to retrieve all the pairs into a pandas DataFrame, from the database 
without needing to rerun the cointegration analysis.



Analysis

8

Mean Reversion

Mean reversion refers to the idea that over time, things tend to return to 
their average or “mean” level. As it relates to stock prices, if you have a 
stock that is performing much better than it has in the past, the mean 
reversion theory states that it is likely to go back to its previous 
performance in the future.

The algorithm that we have built, called pairs trading, takes advantage of 
mean reversion in a clever way. If we find two cointegrated stocks, we 
know that they move together. We can take advantage of the fact that 
these cointegrated stocks can still experience independent, short term 
fluctuations. If one starts to overperform and the other starts to 
underperform, there is opportunity for us to make money by taking a 
long position in the under performer and a short position in the over 
performer. The hope is that both stocks return to normal performance. 
The under performer that we have a long position in goes up, and the 
over performer we have a short position in goes down. We have bought 
low and sold high, so both our positions yield profit.

We identify over performing and underperforming by finding two 
cointegrated stocks. With those two stocks, we want to find the spread 
between these stocks, or how different they are from each other. We 
have opted to use the ratio between the two stocks rather than the 
difference because cointegrated stock prices are usually on a 
multiplicative scale to each other (Ex. Stock A’s price is always ~2x Stock 
B’s price, so if Stock B increases by $1, Stock A increases ~$2). It is highly 
likely that the spread between a pair of cointegrated stocks is stationary.

The main way this strategy can fail is if our assumption of cointegration 
does not hold. As one example, our tests could incorrectly show us that 
two stocks are cointegrated when they are not in reality. As a second 
example, our tests could correctly show us that two stocks are 
cointegrated, but in the future, for whatever reason, they move apart 
and are no longer cointegrated. If cointegration no longer holds, it is 
possible that the two stocks diverge and do not mean revert, resulting in 
both our long and short positions losing money.

Of course, there will always be potential points of failure for an 
algorithm that could cause us to lose money, but as they say on Wall 
Street, there is no such thing as a “free lunch”.



Visualizations

9

The heatmap below shows the results of our cointegration test. We can 
see that PODD and RGEN, both in the healthcare industry, had the 
lowest p-value for our cointegration test, so we used this pair of stocks 
to demonstrate our pairs trading algorithm.

This visualization above shows the spread between PODD and RGEN (represented as 
price ratio) with bands representing an upper and lower z-score. When the z-score is 
below the band, that means that stock 1 (PODD) is undervalued compared to stock 2 
(RGEN), so we will buy the spread, which means long stock 1 and short stock 2. 
When the z-score is above the band, that means that stock 1 (PODD) is overvalued 
compared to stock 2 (RGEN), so we will sell the spread, which means short stock 1 
and long stock 2.

Note: Our spread was calculated with moving averages to avoid look-ahead bias. 
Details can be found in our code.



Conclusions

10

The green arrows represent signals that our algorithm bought the 
spread, and the red arrows represent signals that our algorithm sold the 
spread. Luckily, it looks like our algorithm did very well with buying low 
and selling high. 

The profit comparison between our pair trading algorithm and investing into the S&P 500 
is shown above. Our pair trading algorithm requires $0 initial cash outlay, while we 
assumed a $3,670 initial investment in the S&P 500 to have the same ~$507 profit. Note, 
these dollar values are under the assumption that there are no transaction fees for either 
trading strategy.



Statement of Work

11

Statement of Work
All - Responsible for documentation of processes and final report editing 
and review

Raul Martinez - Lead for data cleaning and manipulation

Vincent Lee - Lead for data analysis 

Ryan Pierce - Lead for data visualizations

Collaborative Tools
Slack - Communication and collaboration with team to share ideas, 
links, and files

GitHub - Version control, documentation, and code storage & 
collaboration 

Google Slides - Collaborate on, review, and edit final report

References
1. https://pypi.org/project/yfinance/
2. https://stockanalysis.com/
3. https://requests.readthedocs.io/en/latest/
4. https://www.crummy.com/software/BeautifulSoup/bs4/doc/
5. https://brand.umich.edu/design-resources/templates/
6. https://www.statsmodels.org/
7. https://people.duke.edu/~rnau/411diff.htm
8. http://uu.diva-portal.org/smash/get/diva2:1477748/FULLTEXT01.pdf

https://github.com/ryanapierce/pair-trading-algorithm
https://pypi.org/project/yfinance/
https://stockanalysis.com/
https://requests.readthedocs.io/en/latest/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://brand.umich.edu/design-resources/templates/
https://www.statsmodels.org/
https://people.duke.edu/~rnau/411diff.htm
http://uu.diva-portal.org/smash/get/diva2:1477748/FULLTEXT01.pdf

